LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – STATISTICS

FIFTH SEMESTER – NOVEMBER 2009

ST 5400 - APPLIED STOCHASTIC PROCESSES

Date & Time: 12/11/2009 / 9:00 - 12:00 Dept. No.

SECTION A

Answer all questions.

- 1. Define Stochastic Process.
- 2. Give an example for a Markov Process.
- 3. Mention the conditions for a state of a Markov chain to be recurrent.
- 4. The probability of a particle reaching state A from state B is 0.7 and reaching state B from state A is 0.4. Find the periodicity of state A.
- 5. Define an Irreducible Markov chain
- 6. What is meant by one dimensional random walk?
- 7. When are two states said to be accessible from each other?
- 8. What information does an infinitesimal generator matrix provide?
- 9. Justify the following statement: "An absorbing state is always recurrent".
- 10. Define Martingale.

SECTION B

Answer any FIVE questions.

11. A Markov chain X_0, X_1, X_2 has the transition probability matrix

 $P = \frac{\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0.3 & 0.2 & 0.5 \\ 1 & 0.5 & 0.1 & 0.4 \\ 2 & 0.5 & 0.2 & 0.3 \end{bmatrix}$ and initial distribution $P[X_0 = j] = \frac{1}{3}, j = 0,1,2$. Find

$$P[X_0 = 2, X_1 = 1, X_2 = 0]$$
 and $P[X_0 = 1, X_1 = 1, X_2 = 1]$.

- 12. Explain the different types of stochastic processes.
- 13. Two vendors A and B, compete for the same market. Currently, customer choice of these vendors can be represented by the transition probability

matrix $P = \overline{A} \quad 0.5 \quad 0.5$. What is A's long-term customer share of the market? $B \quad 0.6 \quad 0.4$

(5x8=40)

(10x2=20)

(10 - 2 - 20)

Max.: 100 Marks

atrix

14. Show that the stationary distribution of a Markov chain with the transition

					•••			
$\overline{0}$	q	р	0	0	•••	····		
probability matrix $P = 2$ 3	q	0	р	0	•••			
	q	0	0	р	0	\cdots such that $p + q = 1$		
	q	0	0	0	р	0		
	:	÷	÷	÷	÷	÷		
	:	÷	÷	÷	÷	:		
is as a matrix distribution								

is geometric distribution.

15. If $i \leftrightarrow j$ and *i* is recurrent, then show that *j* is also recurrent

- 16. Define Poisson process.
- 17. State and prove the additive property of the Poisson process
- 18. Give an example each for the following:

(i) Poisson process (ii) Pure Birth process (iii) Discrete space – Discrete time process and (iv) Continuous space – Continuous time process.

SECTION C

Answer any TWO questions.

(2x20=40)

19. a.) Find $\lim_{n \to \infty} p_{22}^{(n)}$ for a Markov chain with transition probability

		1	2	3
matrix <i>P</i> =	1	0.4	0.5	0.1
	2	0.05	0.7	0.25
	3	0.05	0.5	0.45

b.) Write short notes on the concepts of recurrence and transience. (12+8)

- 20. Derive the Kolmogorov forward and backward differential equations of a Markov process.
- 21. a.) Derive the general form of infinitesimal generator matrix of a Markov process. b.) Consider a Markov chain with state space $S = \{0,1\}$ with transition probability

matrix $P = \overline{\begin{matrix} 0 & 1 \\ 0 & 1-\alpha & \alpha \end{matrix}$, $0 < \alpha, \beta < 1$. Calculate the mean recurrence time of $1 \quad \beta \quad 1-\beta$

state '0' and verify that it is the reciprocal of Π_0 , the stationary probability of state '0'. (10+10)

22. Derive the distribution X(t), when $\{X(t), t \ge 0\}$ is a Poisson process.